Anomaly IoT Node Detection Based on Local Outlier Factor and Time Series
نویسندگان
چکیده
منابع مشابه
Online Detection of Anomalous Sub-trajectories: A Sliding Window Approach Based on Conformal Anomaly Detection and Local Outlier Factor
Automated detection of anomalous trajectories is an important problem in the surveillance domain. Various algorithms based on learning of normal trajectory patterns have been proposed for this problem. Yet, these algorithms suffer from one or more of the following limitations: First, they are essentially designed for offline anomaly detection in databases. Second, they are insensitive to local ...
متن کاملResearch on Maximal Frequent Pattern Outlier Factor for Online High-Dimensional Time-Series Outlier Detection
Frequent pattern outlier factor is used to detect outliers with complete frequent itemsets. But it is difficult in real-world time-series data streams application because of its low efficiency. In this paper, we propose a novel maximal frequent pattern outlier factor (MFPOF) and an outlier detection algorithm (OODFP) for online high-dimensional time-series outlier detection. Firstly, the time-s...
متن کاملAnomaly Detection on Graph Time Series
In this paper, we use variational recurrent neural network to investigate the anomaly detection problem on graph time series. The temporal correlation is modeled by the combination of recurrent neural network (RNN) and variational inference (VI), while the spatial information is captured by the graph convolutional network. In order to incorporate external factors, we use feature extractor to au...
متن کاملA Hierarchical Framework Using Approximated Local Outlier Factor for Efficient Anomaly Detection
Anomaly detection aims to identify rare events that deviate remarkably from existing data. To satisfy real-world applications, various anomaly detection technologies have been proposed. Due to the resource constraints, such as limited energy, computation ability and memory storage, most of them cannot be directly used in wireless sensor networks (WSNs). In this work, we proposed a hierarchical ...
متن کاملAnomaly Detection in Time Series of Chlorophyll Around the Time and Location of Large Coastal Earthquakes Using Random Forest Method
Earthquake is one of the most devastating natural hazards which efforts to predict the time, location and magnitude of it have not been yet completely successful. Remote Sensing data is proved to be an effective source of information about lithospheric and atmospheric activities around the impending earthquakes which are referred to as earthquake precursors. The issue of detecting anomalies in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers, Materials & Continua
سال: 2020
ISSN: 1546-2226
DOI: 10.32604/cmc.2020.09774